Институт общей и неорганической химии им. В.И. Вернадского НАН Украины

Г.Я. Колбасов

Состояние исследований и перспективы применения фотоэлектрохимических систем для возобновляемой энергетики

Возобновляемые источники энергии

<u>Природные ресурсы</u>, используемые для возобновляемых источников энергии — <u>солнечный свет, ветер, гидроэнергия</u>, <u>приливы</u>, <u>геотермальная</u> <u>теплота</u> и <u>энергия биомассы</u>

Энергия, вырабатываемая из возобновляемых источников

- В 2012 году около 20 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии.
- использование энергии ветра растет примерно на 30 процентов в год. В 2012 году мощность ветроэлектростанций составила 220 ГВт и широко используется в странах Европы и США.
- Солнечные электростанции используют энергию Солнца в фотоэлектрических электростанциях, работающие на явлении внутреннего фотоэффекта, а также используя кинетическую энергию нагретого носителя –

<u>жидкости</u> или <u>пара</u>. Инвестиции — \$30 млрд в 2012 г.

- Ежегодное производство электроэнергии за счет фотоэлектрических элементов достигло 8 ГВт в 2012 году. Общая мировая мощность фотоэлементной солнечной энергетики составляет 0,1 % общемировой генерации электроэнергии
- На Украине общее количество электростанций на возобновляемых источниках энергии составило 111, из них 23 электростанции – солнечные мощностью ~200 Мвт.

Типы фотоэлектрических элементов

- Кристаллические (первое поколение):
 - монокристаллические кремниевые;
 - поликристаллические (мультикристаллические) кремниевые;
 - технологии выращивания тонкостенных заготовок: EFG (Edge defined film-fed crystal growth technique), S-web (Siemens), тонкослойный поликремний (Apex).
 - ФЭП на основе каскадных структур.
- Тонкоплёночные (второе поколение):
 - кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);
 - на основе теллурида кадмия (CdTe);
 - на основе селенида меди-индия-(галлия);
- <u>ФЭП третьего поколения:</u>
 - органические (полимерные) ФЭП (OPV);
 - гибридные органо-неорганические ФЭП;
 - электрохимические ФЭХП; фотосенсибилизованные красителем (dyesensitized solar cell) - ячейка Гретцеля;
 - фотоэлектрохимические ячейки для получения «солнечного» водорода.

Рис.1 Зависимость КПД преобразования солнечного света для n+ – n – GaAs-электрода от концентрации электронов в nобласти: 1 – до химического модифицирования, 2 – после модифицирования поверхности Re

5

Рис.3 Схема ячейки Гретцеля

Рис.4 Спектр поглощения света красителем Ru-TPA-**EO-NCS** (J.-H. Yum, et al., Nano Energy, vol. 1, pp. 6-12 (2012))

Фталоцианиновые комплексы в ячейке Гретцеля

Рис. 1 Синтезированные и исследованные фталоцианиновые комплексы *p*-и *d*-металлов.

N

N

N

N

Рис. 2 Электронные спектры поглощения бис(1-фенил-1,3бутандионато)фталоцианина гафния в растворе (—) и в тонкой пленке (- - -).

N

N

6

N N

F₂C

CF₃

ТіО₂ фотоэлектроды, модифицированные фталоцианиновыми комплексами

Рис. 1 Методы модификации металлоксидных матриц фталоцианиновыми металлокомплексами

7

Рис. 2 Спектры фотоэлектрохимического тока на электродах: 1– ТіО2; 2 – ТіО2, модифицированном бис(1-фенил-1,3-бутандионато) фталоцианином гафния.

Примеры электрохимических солнечных элементов

 «Солнечный» водород обычно получают разложением воды на водород и кислород:

$2H_2O \rightarrow 2H_2 + O_2$

и применяют полупроводники, слабо поглощающие видимый свет (TiO₂, SrTiO₃, ZnO,WO₃ и др.), что вызвано энергетическими ограничениями протекания реакции разложения воды.

• Для расширения спектра поглощения применяют также варизонные полупроводники, однако эффективности таких систем обычно невелика (к.п.д 4-6%).

• Полученный в фотоячейке водород необходимо также собирать и аккумулировать перед использованием.

Нами для получения водорода разработана фотоэлектрохимическая ячейка с разделенными анодным и катодным пространствами, имеющая 2 основных преимущества благодаря применению ионообменной мембраны:

 Имеется возможность применять полупроводники, хорошо поглощающие видимый свет вследствие замены анодной реакции выделения кислорода реакцией окисления некоторых ионов (S²⁻, SO₃²⁻, Se²⁻ и др.): 2S²⁻ + 2p⁺ → S₂²⁻

2. В такой ячейке может происходить как выделение водорода на катоде, так и его накопление на катоде в виде металлгидрида, минуя стадию получения газообразного водорода :

 $M + H_2O + e^- \rightarrow OH^- + MH_2$

что решает проблему транспортировки водорода.

Фотоэлектроды на основе нанотрубок диоксида титана и пленок CdSe и CdSe_xTe_{1-x} (x=0,65-0,75)

Схематический вид процесса формирования нанотрубок: (а) развитие оксидной плёнки; (б) формирование каверн;

(в) развитие каверн в поры; (г) развитие пор в трубки;

(д) сформированные трубки с пустотами.

11

Для эффективного накопления водорода на катоде необходимо, чтобы потенциал заряда катода соответствовал фотопотенциалу анода в точке максимальной отдачи мощности *E*₁.

Зависимость фототока **ј** от потенциала **Е** для исходного (1) и для модифицированного **Zn** (2) CdSe_{0.65}Te_{0.35} электрода.

Установлено, что величина фотопотенциала E_{ϕ} существенно повышается после формирования на поверхности фотоанода квантовых точек полупроводников (CdS, ZnS) либо металлов (Zn, Au, Pd), а также при использовании подложки из HT-TiO₂ и достигает значения E_2 , соответствующего наибольшей эффективности системы и оптимальному коэффициенту

Разрядные характеристики электрода LaNi_{2.5}Co_{2.4}Al_{0.1}. 1- исходный CdSe; 2- модифицированный Zn.

Выход фототока η_i в растворе **1н.** NaOH для исходного $CdSe_{0.65}Te_{0.35}$ - электрода (3) и для модифицированного наночастицами Ni (4), CdS(1) и Zn (2).

Механизм влияния квантовых точек на величину фотопотенциала фото-13 электрода следующий:

 Квантовые точки формируются на дефектах поверхности, которые являются центрами рекомбинаци и блокируют эти центры. Этот процесс проявляется в кинетике релаксации потенциала после лазерного импульсного возбуждения фотоэлектрода, как это видно на примере CdSe электрода: наблюдается рост амплитуды и времени спада E_ф.

 Квантовые точки имеют повышенную энергию и поэтому навязывают отрицательный потенциал поверхности полупроводника. Нанотрубки TiO₂ оказывают аналогичное действие. Этот факт проявляется в увеличения потенциала плоских зон (нулевого заряда) электрода (рисунок)

Фотоэлектрохимические модули для аккумулирования «солнечного» водорода4

Характеристики ФЭХ модулей

Элект	Фото- ток, мА	Плотность тока, мА/см ²		Потенциал, В		Мощность светового потока, мВт/см ²		
анод		катод		заряд	разряд	анод	катод	
CdSe _{0.65} Te _{0.35}	A1	LaNi _{2.5} - Co _{2 4} Al ₀	23.3	1.19	3.76	-0,956	-0.924	71
CdSe	A2	-"	20.6	1.05	3.32	-0.964	-0.928	72
CdSe	A3	LaNi _{4.5} - Al _{0.5}	16.5	2.44	2.66	-0.951	-0.918	71
CdSe	A4	_??_	18.5	2.31	2.98	-0,960	-0.926	36

Сплавы для аккумулирования водорода, использованные нами в фотоэлектрохимической ячейке

Катоды - многокомпонентные сплавы типа **AB**₅ (на основе LaNi₅), получены в **Институте** проблем материаловедения им. И.М. Францевича НАН Украины методом электродуговой плавки в защитной атмосфере.

Термодинамические, электрохимические и сорбционные характеристики сплавов

N	Состав	Характеристики сплавов							
п/п	сплава	V _{яч.} , А ³	ΔV, %	ΔН _{дес.} кДж/моль Н ₂	E _{M/MH} , B	С _{раз} ,*мА.ч/г	і _{-0.96В} **, мА/см ²		
1	LaNi ₅	86,92	-	31,6	-0. 95	220	-6.2		
2	LaNi _{2.5} Co ₂₅	88,13	1.4	37,3	-0.93	250	-13.2		
3	LaNi _{4.5} Mn _{0.5}	88,29	1.6	36,40	-0. 92	315	-22.0		
4	LaNi _{4.5} Al _{0.5}	88,68	2.0	39,75	-0.91	320	-22.5		
5	LaNi _{4,0} Al _{1,0}	90,00	3.5	52,10	-0. 85	260	-		
6	LaNi _{2.5} Co _{2.4} Al _{0,1}	88,85	2,2	-	-0.93	220	-15,0		
7	LaNi _{2.5} Co _{2.3} Al _{0,2}	89,07	2,5	-	-0,92	270	-20,6		
8	LaNi _{3,4} Co _{1,2} Al _{0,3} Mn _{0,1}	88,56	1,9	39.04	-0.91	320	-28,2		
9	Mm (La)Ni _{3.5} Co _{0.7} Al _{0.8}	87,34	0.5	47,2	-0.90	270	-28.0		
10	MmNi _{4.3} Mn _{0.5} Al _{0.2}	86,94	0	•	-0.92	280	-24.0		

AI - способствует снижению равновесного давления (потенциала) образования/разложения гидрида Mn, Co - облегчают активацию поверхности.

(Mm – мешметалл следующего состава: La – 20 ÷ 25 %, (Pr + Nd) – 10 ÷ 15 %, Ce – 48 ÷ 55 %, Dy – 0.5 ÷ 1.0 %, Sm – 1.0 ÷ 1.5 %))

Фотоаккумулятор - обратимая фотоэлектрохимическая система, использующая накопленный водород в отсутствие освещения

Схема обратимой фотоэлектрохимической системы: 1- фотоэлектрод в полисульфидном растворе, 2- противоэлектрод, 3- катионообменная мембрана, 4- аккумулирующий электрод в растворе щелочи. **R**_H – сопротивление нагрузки. **I**_ф – фототок, **I**₃ – ток заряда, **I**_p - ток разряда.

Обратимость системы обеспечивается протеканием реакции восстановления полисульфид-ионов на 3-ем дополнительном электроде, расположенном в анодном пространстве ячейки:

 $S_2^{2-} + e^{-} = 2S^{2-}$.

Реакция протекает при разряде катода-металлгидрида на нагрузку *Rн*.

16

